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A NEW ALGORITHMIC APPROACH TO LINEAR 
MULTI – OBJECTIVE FRACTIONAL 

TRANSPORTATION PROBLEM 
R. Sophia Porchelvi1 and A. Anna Sheela2 

Abstract: In this paper , a new algorithm is developed for a Linear Multi – Objective Fractional Transportation Problem ( MLFTP) starts with 
any initial Basic Feasible Solution and then checking its Non-Dominance character . Here, a Multi – criteria Simplex type iteration is 
considered for finding the Non-Dominated Basic Feasible Solution by using the Reduced cost . Numerical examples are provided to illustrate 
its feasibility. 
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1 . Introduction 

The Multi-Objective Transportation Problem refers to a 
Special class of Linear Programming Problem in which the 
constraints are of equality type and all objectives are 
conflicting with each other. All the proposed methods to 
solve Multi-Objective Linear Programming problem 
generate a set of Non-Dominated or compromise 
solution[1]. Particularly, The Multi-Objective Fractional 
Programming models are of greater interest in our daily 
life. We are often concerned about the optimization of the 
ratios like the summary cost of the total transportation 
expenditures to the maximal necessary time to satisfy the 
demands, the total benefits or production values into time 
unit, the total depreciation into time unit and many other 
important similar criteria, what may appear in order to 
evaluate the economic activities and make the correct 
managerial decisions. In this paper , we make a simplex 
type – iteration To generate the set of all non-dominated 
basic feasible solutions , while moving from one solution to 
next , which ensures that the new solution so obtained is 
not dominated by the previous one as given by [ 2 , 3 , 4,5 ]. 

The Paper is organized as follows; The Mathematical 
formulation of MLFTP is given in Section 2. The Section 3 
explains the Definitions of Non-Dominated and Dominated 
Solutions. In Section 4,an Algorithm is proposed to solve 
the Linear Multi – Objective Fractional Transportation 
Problem. A Numerical Example is given to illustrate its 
feasibility in Section 5 and the conclusion of the paper is 
given in Section 6. 
2 .Mathematical Formulation 
The linear Multi-Objective Fractional Transportation 

Problem ( MLFTP ) is defined as follows : 
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𝑖=1 =  𝑏𝑗,∑ 𝑎𝑖𝑚
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𝑗=1 ,  𝑥𝑖𝑗 ≥ 0,  
Where ai is the ith source, bj is the jth destination, cij  is the 

Total actual Transportation cost , dij is the Total standard 
Transportation cost from ith to jth destination . Without loss 
of generality, we assume throughout this paper that 
𝑎𝑖 > 0 , 𝑖 ∈ 𝑀 and 𝑏𝑗 > 0, 𝑗 ∈ 𝑁 and ∑ 𝑥𝑖𝑗𝑛

𝑗=1 = 𝑎𝑖 ,∑ 𝑥𝑖𝑗𝑚
𝑖=1 =  𝑏𝑗  

3. Definitions 
3.1  A feasible solution 𝑋 =  𝑥𝑖𝑗 is said to be a non-

dominated solution of ( P) if there does not exist any 
other feasible solution 𝑋 =  𝑥𝑖𝑗 of ( P ) such that , for 
all non-basic cells ( i , j ), ∆𝑖𝑗< 0 for atleast one l ( l = 1, 
2,….k ). 

3.2  A feasible solution 𝑋 =  𝑥𝑖𝑗 is said to be a dominated 
solution of ( P) such that , for all non-basic cells                    
(i, j), ∆𝑖𝑗≥ 0 for l (l = 1, 2,….k) with atleast one 
inequality in a strictly positive sign . 

4 .Solution Algorithm 
In this section we develop a solution algorithm to solve 

the MLFTP .The various Steps of the algorithm are as 
follows . 
Step 1 : Find the maximum profit per cost and to that 

allocate the minimum supply / demand. 
Step 2 : Cross out the row /column without supply / 

demand. 
Step 3 : Proceed the steps (1) and ( 2 ) until all supplies/ 

demands are satisfied. 
Step4: Check the number of occupied cells. If there are 

less than m + n – 1, there exists degeneracy and 
introduce a very small positive assignment of ∈ in 
suitable independent positions ,so that the number 
of occupied cells is exactly equal to m+n–1  
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Step 5 : Find 𝑧1, 𝑧2 , … . . 𝑧𝑘corresponding to first , second 
and kth cost respectively. 

Step 6 : For Any Basic Feasible Solution , Find the dual 
variables 𝑢𝑖′ ,𝑣𝑗′ 𝑎𝑛𝑑 𝑢𝑖′′ ,𝑣𝑗′′ associated with the 
numerator and denominator of objective, where 
𝑢𝑖′ 𝑎𝑛𝑑 𝑢𝑖′′ , i = 1,2,……m , are corresponding to 
supply constraints and 𝑣𝑗′ ,𝑣𝑗′′ , j = 1,2,…..n , are 
corresponding to demand constraints ,By using the 
Relations𝑢𝑖′ + 𝑣𝑗′ =  𝑐𝑖𝑗 , ( i , j ) ∈ J for J = { ( i , j ) : I ∈
 M , j ∈ N } and 𝑢′𝑖′ + 𝑣𝑗′′ =  𝑑𝑖𝑗 ,( i , j ) ∈ J . 

Step 7 : The reduced costs∆𝑖𝑗 
′ and ∆𝑖𝑗 

′′  are calculated as : 
( i) ∆𝑖𝑗 

′ =  𝑢𝑖′ + 𝑣𝑗′ −  𝑐𝑖𝑗  , ( i ,j ) ∈ J , enter them in the 
upper right corner of the corresponding cells 
without having allocations and  

( ii)  ∆𝑖𝑗 
′′ = 𝑢𝑖′′ + 𝑣𝑗′′ −  𝑑𝑖𝑗 , ( i ,j ) ∈ J ,enter them in 

the lower left corner of the corresponding cells 
having no allocations . 

Step 8 : Calculate ∆𝑖𝑗 =  ∆𝑖𝑗′  − 𝑧 ∆𝑖𝑗′′  
Step 9 : Find ∑∆𝑖𝑗  for all ∆𝑖𝑗

1,2,3,…..𝑘and Choose a non Basic 
cell ( i,j ) for which ∑∆𝑖𝑗 ≥ 0 . If the cell has 
positive inequality , then the solution is dominated 
one . 

Step 10 : Introduce this cell (i , j) into the basis and allocate 
an unknown quantity, say θ. Next , Identify a loop 
that starts and ends at the cell ( i, j ) which connects 
some of the basic cells .Add and Subtract 
interchangeably , θ to and from the transition cells 
of the loop. Assign a maximum value to θ in such a 
way that the value of one Basic variable becomes 
zero and it leaves the basis . Repeat the Steps from 
5 until step 11 is reached  

Step 11 : If ∑∆𝑖𝑗 < 0 , then the solution is optimal . 
 

This Process will terminate after a finite number of steps, 
thus enabling us the complete set of all Non-Dominated 
Basic Feasible Solutions for the ( MLFTP ) – problem . 

5 . Numerical Example  
Let us now Consider the following linear Multi-

Objective Fractional Transportation Problem 
Min 𝑍1 = 1 𝑥11+2 𝑥12 +7 𝑥13+1 𝑥21+9 𝑥22+3𝑥23+8𝑥31+9 𝑥32+ 4 𝑥33

4 𝑥11+4 𝑥12+ 3 𝑥13+5 𝑥21+8 𝑥22+4 𝑥23+6 𝑥31+2 𝑥32+5 𝑥33
 

Min 𝑍2 = 5 𝑥11+ 6 𝑥12 +2 𝑥13+11 𝑥21+3 𝑥22+12 𝑥23+ 4 𝑥31+ 10 𝑥32+ 2 𝑥33
4 𝑥11+5 𝑥12+ 3 𝑥13+ 7 𝑥21+ 8 𝑥22+ 6 𝑥23+ 1 𝑥31+ 3 𝑥32+ 12 𝑥33

 

Min 𝑍3 = 10 𝑥11+ 3 𝑥12 + 4 𝑥13+ 1 𝑥21+16 𝑥22+ 1 𝑥23+ 3 𝑥31+ 4 𝑥32+ 3 𝑥33
12  𝑥11+ 7 𝑥12+ 5 𝑥13+ 7 𝑥21+ 14 𝑥22+ 1 𝑥23+ 6 𝑥31+ 8 𝑥32+ 2 𝑥33

 

 
Subject to : 

x11 +  x12 + x13 = 07, x11 + x12 +  x13 = 08, x11 + x12 + x13 = 10 , 
x21 +  x22 + x23 = 10, x21 + x22  + x23 = 11, x21 + x22  + x23 = 13, 
x31 +  x32 + x33 = 08, x31 + x32 +  x33 = 09 , x31 + x32 + x33 = 11,  

x11 + x21  + x31 = 06, x11  +  x21  + x31 = 07, x11  +  x21  + x31 = 09, 
x12 + x22  + x32 = 04, x12  +  x22  + x32 = 05 , x12  +  x22  + x32 = 07, 

x13 + x23  + x33 = 15, x13  +  x23  + x33 = 16, x13  +  x23  + x33 = 18,  
and xij  ≥ 0 

Table 1 

1 5 10   2 6 3   7 2 4  
7 8 10 

 4 4 12  4 5 7  3 3 5 

1 11 1  9 3 16  3 12 1  
10 11 13 

 5 7 7  8 8 14  4 6 1 

8 4 3  9 10 4  4 2 3  
8 9 11 

 6 1 6  2 3 8  5 12 2 

6 7 9 4 5 7 15 16 18  

 

Table 2 
𝑢𝑖𝑗′ , 𝑢𝑖𝑗′′ , 

𝑖, 𝑗 = 1,2,3 
1 5 10   2 6 3  11 -13 16 7 2 4   

0 0 0 

0 0 0 
 6 7 9      1 1 1  

  4 4 12 -2 0 11  4 5 7   3 3 5 

1 11 1  -4 4 6 9 3 16   3 12 1   
-4 10 -3 

6 3 -4 
    4 5 7   6 6 6  

5 0 1  5 7 7   8 8 14   4 6 1 

8 4 3  -10 1 6 9 10 4  1 -17 4 4 2 3   
-3 0 -1 

2 9 -3 
       8 9 11  

0 12 3  6 1 6 2 11 7  2 3 8   5 12 2 

𝑣𝑖𝑗′  ,𝑣𝑖𝑗′′  , 𝑖, 𝑗 = 1,2,3 

1 5 10 

4 4 12 

13 -7 19 

2 5 18 

7 2 4 

3 3 5 

𝑧1= 0.6470 

𝑧2= 0.6604 

𝑧3= 1.0251 

The reduced costs corresponding to 𝑧1, 𝑧2, 𝑧3are then 
calculated using step 8,  

∆12= 12.294, -13, 4.725, ∑∆12 = 4.0179 
∆21= -7.235, 4 , 4.975, ∑∆21  = 1.7399 
∆31= -10,-6.9248,2.925, ∑∆31  = -14.0001 
∆32= -0.294,-24.2644,6.824∑∆32  = -17.7341 is a dominated 

solution. 
Hence ∆12enters the basis  
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Table 3 
𝑢𝑖𝑗′ , 𝑢𝑖𝑗′′ , 

𝑖, 𝑗 = 1,2,3 
1 5 10   2 6 3   7 2 4  -11 13 -16 

0 0 0 
0 0 0 

 6 7 9   1 1 1     
  4 4 12   4 5 7 2 0 -11  3 3 5 
1 11 1  7  -9  22 9 3 16   3 12 1   

7  -3  13 
4  3  7 

    3  4  6   7  7  7  
3  0  12  5 7 7   8 8 14   4 6 1 
8 4 3  1  -12 22 9 10 4  1 -17 4 4 2 3   

8  -13  15 
0 9 8 

       8 9 11  
-2  12 14  6 1 6 2 11 7  2 3 8   5 12 2 

𝑣𝑖𝑗′  , 𝑣𝑖𝑗′′  , 𝑖, 𝑗 = 1,2,3 

1 5 10 
4 4 12 

2  6  3 
4  5  7 

-4  15  -12 
5  3  -6 

𝑧1= 0.5677 
𝑧2= 0.7209 
𝑧3= 1.0043 

The reduced costs corresponding to 𝑧1, 𝑧2, 𝑧3are then 
calculated using step 8,  

∆13= -12.1354 , 13 , -4.9527 , ∑∆13 = -4.0881 
∆21= 5.2969, -9, 9.9484, ∑∆21  = 6.2453 
∆31= 2.1354, -20.6508, 7.9398,∑∆31  = -10.5756 
∆32= -0.1354, -24.9299, 6.9699,∑∆32  = -18.0954 is again a 

dominated solution. 
Hence ∆21enters the basis  

Table 4 
𝑢𝑖𝑗′ , 𝑢𝑖𝑗′′ , 

𝑖, 𝑗 = 1,2,3 
1 5 10   2 6 3  11 -13 16 7 2 4  -4 4 6 

0 0 0 
0 0 0 

 3 3 3   4 5 7      
  4 4 12 -2 0 11  4 5 7 5 0 1  3 3 5 
1 11 1   9 3 16  -7 9 -22 3 12 1   

0  6  -9 
1  3  -5 

 3 4 6      7  7  7  
  5 7 7 -3 0 -12  8 8 14   4 6 1 
8 4 3   -6 -3 0 9 10 4  -6 -8 -8 4 2 3   

 1 -4  -7 
-3 9 -4 

       8 9 11  
-5  12 2  6 1 6 -1 11 -5  2 3 8   5 12 2 

𝑣𝑖𝑗′  , 𝑣𝑖𝑗′′  , 𝑖, 𝑗 = 1,2,3 

1 5 10 
4 4 12 

2  6  3 
4  5  7 

3  6  10 
8  3  6 

𝑧1= 0.4589 
𝑧2= 0.8883 
𝑧3= 0.6218 

The reduced costs corresponding to 𝑧1, 𝑧2, 𝑧3are then 
calculated using step 8,  

∆13= -6.294, 4 , 11.5962 , ∑∆13 = 9.3017 
∆22= -5.6233, 9 , 20.7564, ∑∆22  = -17.3797 
∆31= -3.7055, -13.6596, 7.4616, ∑∆31  = -24.8267 
∆32= -5.5411, -17.7713, -9.8654, ∑∆32  = -33.1778 is a 

dominated solution. 
Hence ∆13enters the basis  
 
 
 

Table 5 
𝑢𝑖𝑗′ , 𝑢𝑖𝑗′′ , 

𝑖, 𝑗 = 1,2,3 
1 5 10  4 -4 -6  2 6 3   7 2 4   

0 0 0 
0 0 0 

    4 5 7    3 3 3  
-5 0 -1  4 4 12   4 5 7   3 3 5 
1 11 1   9 3 16  -11 13 -16 3 12 1   

-4  10  -3 
6  3  -4 

 6 7 9      4 4 4  
  5 7 7 2 0 -11  8 8 14   4 6 1 
8 4 3   -6 -3 0 9 10 4  -10 -4 -2 4 2 3   

 -3 0  -1 
2 9 -3 

       8 9 11  
-5  12 2  6 1 6 2 11 -4  2 3 8   5 12 2 

𝑣𝑖𝑗′  , 𝑣𝑖𝑗′′  , 𝑖, 𝑗 = 1,2,3 

5 1 4 
-1 4 11 

2  6  3 
4  5  7 

7  2  4 
3  3  5 

𝑧1= 0.6031 
𝑧2= 0.8326 
𝑧3= 0.5163 

The reduced costs corresponding to 𝑧1, 𝑧2, 𝑧3are then 
calculated using step 8,  

∆11=7.0155, -4, -5.4837, ∑∆11= -2.4682 
∆22= -12.2062, 13 , -10.3207, ∑∆22  = -9.5269 
∆31= -2.9845, -12.9912, -1.0326, ∑∆31  = -17.0083 
∆32= -12.4124, -13.1586, 0.0652, ∑∆32  = -25.5058. 
since∑∆𝑖𝑗 < 0 ,we get a non-dominated basic feasible 

solution, and the solution is  
{(0 0 0) , (4 5 7) ,(3 3 3) , (6 7 9) , (0 0 0) , (4 4 4) , (0 0 0) , (0 

0 0) , (8 9 11) } T 
ForMin .𝒛𝟏= 0.6031, 𝒛𝟐= 0.8326, 𝒛𝟑= 0.5163 

6. Conclusion 
In this paper, An Algorithm is developed for a linear 

Multi – Objective Fractional Transportation Problem and 
this approach is used to find the Reduced cost and also 
helps to find the set of all Non – Dominated Basic Feasible 
Solution with the Multi objective values of Fractional 
Objective coefficients. 
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